Flux growth of crystals of some transition metal fluorides

BARBARA M. WANKLYN Clarendon Laboratory, Oxford, UK

The flux growth of crystals of the following complex fluorides is reported: KFeF₄, K₂FeF₅, K₂Fe₅F₁₇, RbFeF₄, FeF₃, K_{0.25}FeF₃, K₂CrF₅, KCrF₄, K₂Cr₅F₁₇, K₂NiF₄, KNiF₃ and LiRF₄ (R = Er to Gd). Triangular composition diagrams for the metal fluoride, KF, and KCl or PbCl₂ are given.

1. Introduction

Complex fluorides of the transition metals are of interest on account of their magnetic properties, as indicated in Table I which lists transition temperatures of some iron and nickel

 TABLE I Transition temperatures of some complex fluoride compounds.

Formula	T _N	Reference	
KFeF ₄ (planar antiferromagnet)	230, 137	1, 2	
K_2 Fe F_5	60	1	
RbFeF ₄ (planar antiferromagnet)	190, 50–60	1, 3	
FeF ₃ (canted antiferromagnet)	364, 362, 362 4, 5, 6		
K ₂ NiF ₄ (planar antiferromagnet)	102, 200, 97, 97	7, 8, 9, 10	
KNiF ₃	275, 253.5, 275, 250, 235.3	11, 12, 13, 14, 15	
LiHoF ₄	1.1	16	
LiTbF ₄	2.86	17	

compounds [1-17]. Data for the corresponding chromium compounds are not available. These complex fluorides are difficult to prepare as single crystals by growth from the melt, since the transition metal fluorides are not commercially available as oxide-free, anhydrous materials of high purity. Therefore, for growth by this method, those of the compounds which melt congruently (KFeF₄, RbFeF₄, KNiF₃ and some of the LiRF₄ series) must be purified, and preferably melted, under HF in platinum

equipment. Some of the compounds melt incongruently but these, as well as the congruently melting compounds, can be grown at relatively low temperatures by the flux method [18-20]. NH₄HF₂ or KHF₂, incorporated in the flux, fluorinates most oxide material present; it is observed that the high melting oxide phases crystallize out first, and the growing crystals can reject any remaining oxygen ions during the growth process, which is slow relative to growth from the melt. When growth takes place in air, as in the experiments here described, a balance has to be struck between a desirably slow growth rate and contamination of the melt by hydrolysis or oxidation during growth. Of the compounds listed here, only the LiRF₄ series oxidized so readily that a relatively fast growth rate was required, limiting the crystal size to 1 to 1.5 mm.

Growth from the pure melts of crystals of $KFeF_4$ [21] and $LiYF_4$ [22, 23] have been reported. K_2NiF_4 [24] and $KNiF_3$ [19] have been grown from KF and (KF + KCl) as flux, and FeF₃ has been produced as very ismall crystals from the vapour [25]. The other materials have been reported as powders only.

For identification purposes, X-ray powder pattern data for compounds in the systems $MF-FeF_2-FeF_3$ (M = Li, Na, K, Rb, Cs, Tl) were obtained from a thesis by Tressaud [1], who prepared powder specimens by reacting the components in sealed tubes of platinum or gold. He determined the melting points and crystallographic transition temperatures by differential thermal analysis.

2. Materials and equipment

The chemicals used were: Koch-Light CrF₃,

FeF₃ and RbCl; Johnson Matthey Grade 2 PbF₂; Lindsay Rare Earth Chemicals HoCl₃; BDH Optran NiF₂ and RbF; BDH "Analar" KCl; BDH Laboratory Reagent grade KHF₂ and PbCl₂; and BDH 99.9% RF₃.

Platinum crucibles of 0.5 mm wall thickness with close-fitting lids were used. The control equipment has been described [26]. The furnaces had Crusilite elements at each side, protected from the reactive flux vapours by D-shaped sillimanite muffles [27].

3. Experimental

The starting compositions and furnace pro-

grammes which produced the best crystals are given in Table II. The materials were weighed out to \pm 0.05 g, mixed together, put into crucibles and the lids closely fitted. The crucibles were placed on a layer of alumina powder in the sillimanite muffle, and the entrance was blocked with refractory brick. The furnace was heated at 100 K h⁻¹ to the maximum temperature of the run and slow cooling was commenced at once.

4. Results

With $PbCl_2$, KF and KCl as the flux components, transport of Si and Al from the muffle into the fluxed melts, which had been

Composition of mixture	Crucible volume (cm ³)	t_{\max} (°C)	Rate of cooling (K h ⁻¹)	Final temperature (°C)	Crystal products
15 g FeF ₃ , 6.7 g KCl, 4.7 g KHF ₂ , 8 g NH ₄ HF ₂	100	870	2	300	Flattened prisms of KFeF ₄ up to $(4 \times 4 \times 2)$ mm ³
5.4 g FeF ₃ , 8.9 g PbCl ₂ , 1.6 g KHF ₂ , 3 g NH ₄ HF ₂	20	1020	7	300	Black shiny $K_x FeF_3$
12.8 g FeF ₃ , 26.8 g PbCl ₂ , 15.2 g KHF ₂ , 4.6 g NH ₄ HF ₂	50	640	1.5	330	Colourless transparent K_2FeF_5 up to (4 × 3 × 3)mm ³
5.9 g FeF ₃ , 21.8 g PbCl ₂ , 1.7 g KHF ₂ , 2 g NH ₄ HF ₂	20	850	2	450	Black, brittle crystals of $K_2Fe_5F_{17}$
4 g FeF ₃ , 3.6 g RbCl, 2.1 g RbF, 6 g NH ₄ HF ₂	20	870	3	350	Plates of transparent, brownish RbFeF ₄ up to (1×1) cm ²
27.2 g FeF ₃ , 36 g PbCl ₂ , 8 g PbF ₂ , 10 g NH ₄ HF ₂	100	1020	7	300	Platelets of FeF ₃ up to $(2 \times 2 \times 0.5)$ mm ³ , above melt on walls. Larger plates in melt
6.6 g CrF ₃ , 20 g PbCl ₂ , 4.7 g KHF ₂ , 1.5 g NH ₄ HF ₂	20	870	2	300	Fibrous rods of $\alpha KCrF_4$ up to (12 × 1.5 × 1.5)mm ³ and prisms of K ₂ Cr ₅ F ₁₇ up to (3 × 2 × 2)mm ³
7.9 g CrF ₃ , 15.6 g PbCl ₂ , 5.6 g KHF ₂	20	930	6	350	Fibres of $\alpha K Cr F_4$ up to 10 mm in length and $(2 \times 2)mm^2$ platelets of $K_2 Cr F_5$
10 g NiF ₂ , 7.5 g KCl, 21 g KHF ₂	50	960	2	300	Platelets of K_2NiF_4 up to $(3 \times 3 \times 1)mm^3$
12.6 g NiF ₂ , 17.9 g KCl, 10.2 g KHF ₂ , 4 g NH ₄ HF ₂	50	960	2	300	Transparent crystals of KNiF ₃ up to $(4 \times 4 \times 4)$ mm ³
9.7 g NiF ₂ , 38.5 g PbCl ₂ , 11.6 g KF, 3.5 g NH ₄ HF ₂	50	900	4	340	$KNiF_{3}$ up to (5 \times 5 \times 5) mm^{3}
10.9 g HoCl ₃ , 0.9 g LiF, 20.1 g PbCl ₂ , 10 g PbF ₂ , 5 g NH ₄ HF ₂	20	870	3	350	Yellow pyramidal crystals of LiHoF ₄ . Flux evaporated completely
7.5 g DyF ₃ , 0.9 g LiF, 18 g PbCl ₂ , 1.4 g PbF ₂ , 5 g NH ₄ HF ₂	20	870	2	300	Clear yellow crystals of LiDyF ₄ Evaporation of flux almost complete

TABLE II Starting compositions, furnace programmes and crystal products

observed with PbF_2 as flux [27, 28], did not occur. The triangular composition diagrams of the metal fluoride, KF, and KCl or $PbCl_2$, are given in Fig. 1 and show the starting compositions that produced the crystals indicated.

The crystals were identified by their X-ray

Figure 1 Starting compositions that produced the phases indicated. (a) $FeF_3-KF-KCl.$ (b) $FeF_3-KF-PbCl_2.$ (c) $CrF_3-KF-PbCl_2.$ (d) $NiF_2-KF-KCl.$ (e) $NiF_2-KF-PbCl_2.$

powder patterns and in some cases by electron probe micro-analysis (EPMA).

When the maximum temperatures were notably lower than those given in Table II, extensive oxidation occurred. This may be because the mixture remained in a sintered state, with high surface area, for a long period before complete melting occurred. With the higher maximum temperature, complete liquefaction was presumably much more rapid.

5. Notes on the crystals

5.1. KFeF₄

The melting point of this orthorhombic material has been reported as $630 \pm 10^{\circ}$ C [1]. A relatively rapid cooling rate (7 K h⁻¹) resulted in sheets of crystal, whereas when cooled at 2 to 3 K h⁻¹, tabular prisms (4 × 4 × 2) mm³, shown

Figure 2 Platelets of KFeF₄ (1 mm grid).

in Fig. 2, were produced. The crystals were glossy, transparent, amber or pale mauve in colour. They showed simultaneous extinction and cleaved very readily especially when grown at the faster rate. They were soft, and thin slices could be bent in a rather fibrous manner. They reacted with cold water, precipitating $Fe(OH)_3$, but did not appear to be hygroscopic.

5.2. K, FeF₅

 K_2FeF_5 is said to decompose into $KFeF_4$ and KF on heating [1]. Crystals 3 to 4 mm on edge grew from $PbCl_2 + KF$ as flux. They were colourless, without facets, the cleavage was vitreous, and they showed simultaneous extinction. The X-ray powder pattern, as reported for K_2FeF_5 [1], was very similar to those of K_2CrF_5 and K_2GaF_5 [29, 30]. The crystals reacted with cold water precipitating $Fe(OH)_3$.

5.3. K₂Fe₅F₁₇

The crystals grew as prisms with facets up to (6×6) mm². They were black, shiny, extremely brittle, and hydrolyzed in water. The X-ray powder pattern agreed with published data [1]. (Note: see K_x FeF₃, Section 5.6.)

5.4 αRbFeF₄

This material has been reported to melt at 690°C and to undergo a crystallographic transition at 650°C [1, 31]. The crystals grew as transparent sheets, brownish or amber in colour, up to 1 cm on edge. Under the polarizing microscope, twin domains were apparent. The crystals resembled KFeF4 as regards cleavage and reaction with H₂O. The X-ray powder

pattern indicated that this was the low-temperature (α) form of RbFeF₄ [1].

5.5. FeF₃

To lower the liquidus temperature, and avoid undue dissociation to FeF2 [32], PbF2 was added to PbCl₂ flux as shown in Table II. Well-formed rods and platelets $(2 \times 2 \times 1)$ mm³ grew just above the melt on the crucible walls, the melt having presumably reached these sites by a creeping process followed by evaporation of the flux. Thin platelets were transparent, green, and showed almost simultaneous extinction. Like AlF₃, this material is cubic at the growth temperature and becomes rhombohedral at 402°C [25]. This results in twinning of the larger crystals. In the melt, larger, more opaque FeF_3 material occurred.

5.6. $K_x FeF_3$ (x = 0.18 to 0.25) or KF.Fe F₂.3 FeF₃

This hexagonal phase is reported to exist as a solid solution with x = 0.18 to 0.25 [33-35] and was produced as black, shiny, polycrystals in melts, intended to result in KFeF4, which were heated to about 1000°C; FeF_a is known to decompose near this temperature [32] and it appears that $K_x FeF_3$ is the product of its partial decomposition in the presence of KF. Similarly, FeF₂ occurred as dark brown rods with FeF₃ and with $KFeF_4$ and K_xFeF_3 in melts heated to about 1000°C.

Hexagonol $K_x FeF_3$ (x=0.18 to 0.25) and K₂Fe₅F₁₇ have very similar X-ray powder patterns, differing only in the intensities of the weaker lines. Tressaud [1] suggests that the structures of both derive from the tungsten bronze, K_xWO_3 . The fact that free FeF₂ occurred with the phase described here, in addition to the agreement of the X-ray powder pattern data with that published, substantiates the probability that this material is $K_x FeF_3$ (or KF.FeF₂.3FeF₃ approximately).

5.7. K₂CrF₅

The crystals were identified by single crystal X-ray analysis which showed that they were orthorhombic with $a_0 = 7.36$ Å, $b_0 = 12.82$ Å, $c_0 = 20.30$ Å, space group *Pbcn*, in close agreement with the unit cell reported by de Kozak for K₂CrF₅ [36], who also reported that this compound melts incongruently at 855°C. The powder pattern agreed closely with that reported for K₂GaF₅ [29, 30].

K₂CrF₅ crystals occurred together with

Figure 3 (a) and (b) Rods of aKCrF₄ (1 mm grid).

 KCrF_4 fibres. They were separated mechanically from the flux and cleaned by soaking overnight in hot 1:15 HNO₃ solution. They grew as fragile dark emerald green platelets approximately $(2 \times 2 \times 0.2) \text{ mm}^3$, and under the polarizing microscope they showed extinction parallel to an edge.

5.8. aKCrF₄

The X-ray powder pattern of the dark green fibres which occurred with K_2CrF_5 agreed closely with that given for $\alpha KCrF_4$ by de Kozak [36, 37], and EPMA was consistent with this formula. He also reported that $KCrF_4$ melts incongruently at 925°C and undergoes a structural transition at 786°C to the low temperature form, $\alpha KCrF_4$. These hexagonal fibres differ both in structure and in habit from the other compounds KMF_4 (M = Fe³⁺, V³⁺, Ga³⁺, Al³⁺), which have tetragonal or orthorhombic structures and plate-like habits.

The fibrous rods were cleaned by soaking overnight in hot 1:15 HNO₃ solution. They showed extinction parallel to the axis. Pressure on the rods revealed their fibrous nature: the rods divided into a brush-like structure, the units of which were so fine that it was difficult to obtain single crystal X-ray photographs. The fibres bent readily without cracking. Fig. 3 shows some of the rods.

EPMA indicated that the crystals contained 0.6% Pb.

5.9. K₂Cr₅F₁₇

This compound is said to melt incongruently at 1115°C [36]. Dark green, hexagonally faceted, shiny prisms approximately $(2 \times 2 \times 2)$ mm³ grew at the surface of the melt containing also α KCrF₄ and K₂CrF₅. Some are shown in Fig. 4. The crystals cleaved readily parallel to the basal plane. Under the polarizing microscope, extinction was not quite uniform, possibly due to strain. After mechanical separation they were cleaned by soaking overnight in warm 1:15 HNO₃ solution. The X-ray powder pattern closely resembled those given for $K_2V_5F_{17}$ [38], $K_2Ga_5F_{17}$ [29] and $K_2Fe_5F_{17}$ [1], and EPMA of the crystals was consistent with the formula $K_2Cr_5F_{17}$. EPMA showed that they contained 0.1% Pb.

5.10. K₂NiF₄

 K_2NiF_4 melts incongruently at 930°C [39]. Crystals were obtained from (KCl and KF) as flux. They grew as pseudo-cubes or platelets, a few mm on edge.

Figure 4 Transparent, dark green prisms of $K_2Cr_5F_{17}$ (1mm grid).

5.11. KNiF₃

A previous paper [19] reported the growth of $KNiF_3$ from a mixture of NiF_2 and KCl, which resulted also in crystals of NiF_2 . A great degree of intergrowth took place which caused strain and deformation of the crystals.

Better quality $KNiF_3$ has been obtained from compositions in the three-component systems $NiF_2-KF-PbCl_2$ and $NiF_2-KF-KCl$, from both of which it was possible to obtain $KNiF_3$ in the absence of NiF_2 . The crystals grew firmly attached to the crucible wall or base, and had to be separated mechanically and finally cleaned in dilute HNO₃ when (KF + PbCl₂) was used as flux, whereas (KF + KCl) dissolved in water. Those crystals which grew with only a small area of attachment to the crucible were found to be free from strain. They were up to 5 mm on edge. X-ray topographs showed that some of them were almost free from dislocations and of a high degree of perfection [40].

5.12. LiRF₄ (R = Tm, Er, Ho, Dy, Gd)

These compounds have the same tetragonal structure as the rare earth vanadates, phosphates and arsenates. LiTbF₄ has been reported to be ferrimagnetic [17] and small crystals of the compounds with R = Tm, Er, Ho, Dy and Gd were required for determination of magnetic susceptibilities.

LiTmF₄ melts congruently at 800°C but, with increasing ionic radius of the rare earth ion, the compounds melt incongruently [41]. While it is possible to pull the crystals from a non-stoichiometric melt, with excess LiF [22, 23], this requires purification of RF₃ under HF and relatively large batches. It was found possible to grow transparent crystals 1 to 1.5 mm in size by using (PbCl₂ + PbF₂) as flux, with either RF₃ or anhydrous RCl₃, plus LiF and NH₄HF₂ (see Table II). When HoCl₃ was used, it was interesting to note that the mixture became hot and fumed for several seconds, presumably owing to a reaction which produced NH₄Cl. The crystals were identified by comparison of their X-ray powder patterns with published data [42].

The melt appeared to hydrolyze appreciably in the furnace, and it was not possible to produce larger crystals since larger batches and slower cooling rates resulted in opaque material only.

Acknowledgements

The author thanks Dr G. Garton for helpful discussions, Dr S. H. Smith for technical assistance and Mr F. R. Wondre for X-ray powder patterns. She is also grateful to Mr W. Davison of the School of Physics, Newcastle upon Tyne, for EPMA, and to Dr A. J. Edwards and Dr J. C. Dewan of the Department of Chemistry, Birmingham University, for single crystal X-ray work. This work was supported in part by the Science Research Council.

References

- 1. A. TRESSAUD, Thesis Faculte des Science de l'Universite de Bordeaux, October 1969.
- 2. G. HEGER, R. GELLER and D. BABEL, Solid State Commun. 9 (1971) 335.
- 3. M. EIBSCHUTZ, H. J. GUGGENHEIM and L. HOLMES, J. Appl. Phys. 42 (1971) 1485.
- 4. G. K. WERTHEIM, H. J. GUGGENHEIM and D. N. E. BUCHANAN, Solid State Commun. 5 (1967) 537.
- 5. U. BERTELSEN, J. M. KNUDSEN and H. KROGH, *Phys. Stat. Sol.* 22 (1967) 59.

- 6. L. M. LEVINSON, J. Phys. Chem. Solids 29 (1968) 1331.
- 7. E. LEGRAND and A. VAN DEN BOSCH, Solid State Commun. 7 (1969) 1191.
- 8. R. J. BIRGENEAU, H. J. GUGGENHEIM and G. SHIRANE, *Phys. Rev. Letters* 22 (1969) 720.
- 9. R. J. BIRGENEAU, F. DE ROSA and H. J. GUGGEN-HEIM, Solid State Commun. 8 (1970) 13.
- R. J. BIRGENEAU, J. SKALYO JUN and G. SHIRANE, J. Appl. Phys. 41 (1970) 1303.
- 11. R. V. PISAREV and S. D. PROKHOROVA, Sov. Phys. Solid State 10 (1969) 1668.
- 12. C. DEENADAS, H. V. KEER, R. V. G. RAO and A. B. BISWAS, *Indian J. Pure Appl. Phys.* 5 (1967) 147.
- 13. G. BLASSE, Philips Res. Rept. 20 (1965) 327.
- 14. Z. M. KHASHKHOZEV, R. V. PISAREV and G. A. SMOLENSKII, Sov. Phys. Solid State 10 (1969) 2772.
- 15. K. HIRAKAWA and M. FURUKAWA, Jap. J. Appl. Phys. 9 (1970) 971.
- A. H. COOKE and J. SILVA, Clarendon Laboratory, private communication.
- 17. L. M. HOLMES, T. JOHANSSON and H. J. GUGGEN-HEIM, Solid State Commun. 12 (1973) 993.
- 18. G. GARTON and B. M. WANKLYN, J. Crystal Growth 1 (1967) 49.
- 19. B. M. WANKLYN, *ibid* 5 (1969) 279.
- 20. B. J. GARRARD, B. M. WANKLYN and S. H. SMITH, *ibid* 22 (1974) 169.
- 21. G. HEGER, R. GELLER and D. BABEL, Solid State Commun. 9 (1971) 335.
- 22. D. GABBE and A. L. HARMER, J. Crystal Growth 3/4 (1968) 544.
- 23. I. LAURSEN and L. M. HOLMES, J. Phys. C: Solid State Phys. 7 (1974) 3765.

- 24. D. BALZ, Naturwiss. 40 (1953) 241.
- 25. R. WOLFE, A. J. KURTZIG and R. C. LECRAW, J. *Appl. Phys.* 41 (1970) 1218.
- 26. G. GARTON, S. H. SMITH and B. M. WANKLYN, J. Crystal Growth 13/14 (1972) 588.
- 27. B. M. WANKLYN and Z. HAUPTMAN, J. Mater. Sci. 9 (1974) 1078.
- 28. B.M. WANKLYN and G. GARTON, *ibid* 9 (1974) 1378.
- 29. J. CHASSAING, Rev. de Chim. Min. 5 (1968) 1115.
- 30. ASTM 20-428.
- 31. D. BABEL, Z. Naturforsch. 23a (1968) 1417.
- 32. B. M. WANKLYN, J. Inorg. Nucl. Chem. 27 (1965) 481.
- R. DE PAPE, Compt. Rend. Acad. Sci. (Paris) 260 (1965) 4527.
- 34. Idem, Bull. Soc. Chim. Fr. 12 (1965) 3489.
- 35. ASTM 18-1025.
- 36. A. DE KOZAK, Compt. Rend. Acad. Sci. (Paris) 268C (1969) 416.
- 37. Idem, Rev. de Chim. Min. 8 (1971) 301.
- 38. J-C. CRETENET, *ibid* **10** (1973) 399.
- 39. G. WAGNER and D. BALZ, Z. Elecktrochem. 56 (1952) 576.
- 40. M. SAFA, D. MIDGLEY and B. K. TANNER, *Phys. Stat, Sol.* (a) 28 (1975) K89.
- 41. E. M. LEVIN, C. R. ROBBINS and H. F. MCMURDIE, "Phase Diagrams for Ceramists (1969) Supplement", (Amer. Ceram. Soc, Columbus, Ohio, 1969) pp. 364, 365.
- 42. ASTM 17-874.

Received 31 January and accepted 4 March 1975.